How Stueckelberg extends the (Supersymmetric) Standard Model

Boris Körs
MIT

in collaboration with
Pran Nath

hep-ph/0406167, and work in progress
Stueckelberg mechanism for gauge boson masses

- The naive Lagrangian of a massive abelian vector boson:
 \[
 \mathcal{L}_{\text{St}} = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} - \frac{m^2}{2} A_\mu A^\mu
 \]
 Split off longitudinal mode of \(A_\mu \) via
 \[
 A_\mu \rightarrow A_\mu + \frac{1}{m} \partial_\mu \sigma
 \]
 and define gauge transformation
 \[
 \delta A_\mu = \partial_\mu \epsilon \ , \ \delta \sigma = -m \epsilon
 \]
 Gauge invariant renormalizable mass term without Higgs!

- Unitary gauge by adding
 \[
 \mathcal{L}_{\text{gf}} = -\frac{1}{2\xi} (\partial_\mu A^\mu + \xi m \sigma)^2
 \]
 and \(A_\mu \) and \(\sigma \) decouple:
 \[
 \mathcal{L}_{\text{St}} + \mathcal{L}_{\text{gf}} = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} - \frac{m^2}{2} A_\mu A^\mu - \frac{1}{2\xi} (\partial_\mu A^\mu)^2
 \]
 \[
 -\frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \xi \frac{m^2}{2} \sigma^2
 \]

- Note:
 1. Vector \(A_\mu \) eats (real) scalar \(\sigma \) with nothing left.
 2. Constant PQ-shift symmetry \(\delta \sigma = c \): axionic pseudoscalar.
 3. Gauge invar. Lagr. exists only for abelian gauge symmetry.
Stueckelberg in string theory/SUGRA

- $10d \mathcal{N} = 1$ SUGRA coupled to SYM: 2-form B_{IJ} modified
 \[
 (\partial_{[I} B_{JK]})^2 \longrightarrow (\partial_{[I} B_{JK]} + \frac{\kappa_{10}}{g_{YM}} A_{[I} F_{JK]} + \cdots)^2
 \]
 Reduction with internal gauge field $\langle F_{ij} \rangle \neq 0:
 \[
 (\partial_{\mu} B_{ij} + \frac{\kappa_{10}}{g_{YM}} A_{\mu} F_{ij} + \cdots)^2 \sim (\partial_{\mu} \sigma + m A_{\mu})^2
 \]
 with $\sigma \sim B_{ij}$ and $m \sim \langle F_{ij} \rangle$: "Topological mass"

- Well known from Green-Schwarz mechanism:
 \[
 mA^{\mu} \partial_{\mu} \sigma + c \sigma F_{\mu\nu} \tilde{F}^{\mu\nu}
 \]
 contribution to chiral gauge anomalies (in 4d)

\[A_{\mu} \sigma + A_{\mu} = 0\]

Contribution to anomalous triangle diagram $= m \cdot c$.
But mass parameter $= m$.

- Anomalous $U(1)$ always gets massive: $m \cdot c \neq 0$.
 Non-anomalous $U(1)$ can still get massive: $m \neq 0, c = 0$.
- For Stueckelberg models assume $m \neq 0, c = 0$.
- Mass scale \sim string or compactification scale.
Stueckelberg in D-brane models

- Intersecting brane world (four stack) SM:

\[
\text{IBW on } T^6 = T_1^2 \times T_2^2 \times T_3^6
\]

Gauge group (at best):

\[
U(3) \times U(2) \times U(1)^2 \xrightarrow{\text{Stueckelberg}} SU(3) \times SU(2)_L \times U(1)_Y
\]

Stueckelberg masses for extra \(U(1) \)'s:

\[
m_{ij}^2 \sim \tan(\varphi_i) \tan(\varphi_j) \quad \text{for } U(1)_iU(1)_j
\]

- More general IBW configurations on Calabi-Yau 3-folds
Simplest Stueckelberg extension of the SM

- Add one $U(1)_X +$ axion with Stueckelberg couplings to SM:

\[
\begin{align*}
\text{Higgs } \Phi & : & SU(3) \times SU(2)_L \times U(1)_Y \times U(1)_X \\
\text{Stueckelberg } \sigma & : & SU(3) \times SU(2)_L \times U(1)_Y \times U(1)_X
\end{align*}
\]

Extra degrees of freedom $C_\mu + \sigma \longrightarrow$ massive vector Z'

- Lagrangian of minimal Stueckelberg extension of the SM

\[
\mathcal{L}_{\text{SM}} = -\frac{1}{4} \text{tr} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + g_2 A^a_\mu J^a_2 + g_Y B_\mu J^\mu_Y - D_\mu \Phi^\dagger D^\mu \Phi - V(\Phi^\dagger \Phi) + \cdots
\]

\[
\mathcal{L}_{\text{St}} = -\frac{1}{4} C_{\mu\nu} C^{\mu\nu} + g_X C_\mu J^\mu_X - \frac{1}{2} (\partial_\mu \sigma + M_1 C_\mu + M_2 B_\mu)^2
\]

Gauge invariance independent for $U(1)_Y \times U(1)_X$:

- **Hypercharge**: $\delta_Y B_\mu = \partial_\mu \epsilon_Y$, $\delta_Y \sigma = -M_2 \epsilon_Y$
- **$U(1)_X$**: $\delta_X C_\mu = \partial_\mu \epsilon_X$, $\delta_X \sigma = -M_1 \epsilon_X$

Further add gauge fixing \mathcal{L}_{gf} as before.

- Assumptions for simplest scenario:
 1. SM matter neutral under $U(1)_X$.
 2. Hidden sector neutral under SM gauge group.
 3. No spontaneous breaking of $U(1)_X$ in hidden sector.
Stueckelberg effects in the SM

- Only effect is on vector boson mass matrix (basis \((C_\mu, B_\mu, A^3_\mu)\)):

\[
\begin{bmatrix}
M_1^2 & M_1 M_2 & 0 \\
M_1 M_2 & M_2^2 + \frac{1}{4}g_Y^2 v^2 & -\frac{1}{4}g_Y g_2 v^2 \\
0 & -\frac{1}{4}g_Y g_2 v^2 & \frac{1}{4}g_2^2 v^2
\end{bmatrix}
\]

Massless photon \(M^2_\gamma = 0\), two massive eigenvalues

\[
M^2_Z = \frac{v^2}{4} (g_2^2 + g_Y^2) + O(\delta), \quad M^2_{Z'} = M^2 + O(\delta)
\]

Two new parameters: mass scale + small coupling factor

\[
M^2 = M^2_1 + M^2_2 > [150 \text{ GeV}]^2, \quad \delta = \frac{M_2}{M_1} < 0.01
\]

Cplgs suppr. by \(\delta\): EW fits intact even with low mass \(M\).

- Comparison to \(U(1)'\) models with Higgs:

Suppression factor: \(\frac{M^2_Z}{M^2_{Z'}} \sim 0.01 \rightarrow \delta\)

Stueckelberg: No other fields than \(Z'\) left.

- Planck-scale effects at low energies?

\(M_1, M_2 \rightarrow \infty, \quad \delta = \text{finite}\)

\(Z'\) very heavy, but small effects remain.

[Hewett, Rizzo; Cvetic, Langacker; Leike; and many others]
Stueckelberg effects in the SM

• Diagonalize vector mass matrix by

\[\mathcal{O}^T \cdot M_{ab}^2 \cdot \mathcal{O} = \text{diag}(M_{Z'}^2, M_Z^2, 0) , \quad \mathcal{O} = \mathcal{O}(\theta, \phi, \psi) \]

with

\[\tan(\phi) = \delta , \quad \tan(\theta) = \frac{g_Y}{g_2} \cos(\phi) , \quad \tan(\psi) = \frac{g_2(1 - M^2/M_{Z'}^2)}{g_Y \sin(\phi) \cos(\theta)} \]

Bounds: \(\phi, \psi < 1^0 \), \(\theta \rightarrow \theta_W \)

• Couplings to matter fields

\[\mathcal{L}_{\text{int}} = g_2 A^a_{\mu} J_2^{a \mu} + g_Y B_{\mu} J_Y^\mu + g_X C_{\mu} J_X^\mu \]

for the photon find

\[e A^\gamma_{\mu} J^\mu_{\text{em}} = \frac{g_2 g_Y \cos(\phi)}{\sqrt{g_2^2 + g_Y^2 \cos^2(\phi)}} \underbrace{A^\gamma_{\mu} \left(J_Y^\mu + J_2^{3 \mu} - \frac{g_X}{g_Y} \tan(\phi) J_X^\mu \right)}_{\text{electric charge}} \]

Electric charge of hidden sector irrational (and small).

• Decay widths and branching ratios of \(Z' \):

\[\Gamma(Z' \rightarrow f \bar{f}) \sim 10 \text{ MeV} \]

\(Z' \) very sharp peak in \(e^+e^- \) (among other signatures).
Stueckelberg extension of the MSSM: StMSSM

• Supersymmetrize Stueckelberg Lagrangian

\[\mathcal{L}_{\text{St}} = \int d^2 \theta d^2 \bar{\theta} \left(M_1 C + M_2 B + S + \bar{S} \right)^2 \]

with \(S \) Stueckelberg chiral multiplet, \(B, C \) vector multiplets:

\[S = (\chi, \rho + i\sigma, F) \]

\[B = (B_\mu, \lambda_B, D_B) \]

\[C = (C_\mu, \lambda_C, D_C) \]

in components:

\[\mathcal{L}_{\text{St}} = -\frac{1}{2}(M_1 C_\mu + M_2 B_\mu + \partial_\mu \sigma)^2 - \frac{1}{2}(\partial_\mu \rho)^2 - \frac{i}{2}(\chi \sigma^\mu \partial_\mu \bar{\chi} - (\partial_\mu \chi) \sigma^\mu \bar{\chi}) + 2|F|^2 + \rho(M_1 D_C + M_2 D_B) + [\bar{\chi}(M_1 \lambda_C + M_2 \lambda_B) + \text{h.c.}] \]

• Eliminate auxiliary fields \(F, D_B, D_C \): corrected D-terms.

• Add soft breaking terms

\[\mathcal{L}_{\text{soft}} = -\frac{1}{2} \tilde{m}_\rho^2 \rho^2 - \frac{1}{2} \tilde{m}_1 \lambda_B \lambda_B - \frac{1}{2} \tilde{m}_C \lambda_C \lambda_C - \frac{1}{2} m_1^2 |h_1|^2 - \frac{1}{2} m_2^2 |h_2|^2 - m_3^2 (h_1 \cdot h_2 + \text{h.c.}) \]

• Compare to Higgs: “Stueckelino” \(\chi \) neutral

No cplg. \(g_Y B_\mu \chi \sigma^\mu \bar{\chi} \), \(g_X C_\mu \chi \sigma^\mu \bar{\chi} \)

No anomalous contribution \(\Rightarrow \) no second multiplet needed.
Stueckelberg effects in the StMSSM

- Scalar potential with \(\rho \) plus Higgs \(h_1, h_2 \):

\[
V(h_1, h_2, \rho) = \frac{1}{2}(M_1^2 + M_2^2 + \tilde{m}_\rho^2)\rho^2 + V_D^{\text{MSSM}}(h_1, h_2)
+ \frac{1}{2}(m_1^2 - \rho g_Y M_2)|h_1|^2 + \frac{1}{2}(m_2^2 + \rho g_Y M_2)|h_2|^2 + m_3^2(h_1 \cdot h_2 + \text{h.c.})
\]

new scalar \(\rho \) shifts Higgs mass terms through vev: \(\rho \rightarrow v_\rho + \rho \).

Modification of EW constraint negligible:

\[
\frac{1}{2} M_0^2 = \frac{m_1^2 - m_2^2 \tan^2(\beta)}{\tan^2(\beta) - 1} + \frac{g_Y M_2 v_\rho}{\cos(2\beta)}, \quad |g_Y M_2 v_\rho| < 10^{-4} M_Z^2
\]

- Scalar mass matrix (3 CP-even states: \(h_1, h_2, \rho \)):

\[
\begin{bmatrix}
M_0^2 c_\beta^2 + m_A^2 s_\beta^2 & -(M_0^2 + m_A^2) s_\beta c_\beta & -t_\theta c_\beta M_W M_2 \\
-(M_0^2 + m_A^2) s_\beta c_\beta & M_0^2 s_\beta^2 + m_A^2 c_\beta^2 & t_\theta s_\beta M_W M_2 \\
-t_\theta c_\beta M_W M_2 & t_\theta s_\beta M_W M_2 & M^2 + \tilde{m}_\rho^2
\end{bmatrix}
\]

Third resonance (mass eigenstate) in \(J = 0^+ \) channel:

\[
\Gamma(\rho_S \rightarrow t\bar{t}) \sim \text{MeV}
\]

again very sharp.
Stueckelberg effects in the StMSSM

- Neutralino mass matrix now with χ, λ_C plus usual 4: 6×6

$$
\begin{bmatrix}
0 & M_1 & M_2 & 0 & 0 & 0 \\
M_1 & \tilde{m}_X & 0 & 0 & 0 & 0 \\
M_2 & 0 & \tilde{m}_1 & 0 & -c_1M_0 & c_2M_0 \\
0 & 0 & 0 & \tilde{m}_2 & c_3M_0 & -c_4M_0 \\
0 & 0 & -c_1M_0 & c_3M_0 & 0 & -\mu \\
0 & 0 & c_2M_0 & -c_4M_0 & -\mu & 0 \\
\end{bmatrix}
$$

with $c_1 = c_\beta s_\theta$, $c_2 = s_\beta s_\theta$, $c_3 = c_\beta c_\theta$, $c_4 = s_\beta s_\theta$.

- Split eigenstates into $m_{\tilde{\chi}_1^0} < m_{\tilde{\chi}_2^0} < m_{\tilde{\chi}_3^0} < m_{\tilde{\chi}_4^0}$ and

$$
m_{\tilde{\chi}_3^0}, m_{\tilde{\chi}_6^0} = \sqrt{M_1^2 + \frac{1}{4}\tilde{m}_X^2 \pm \frac{1}{2}\tilde{m}_X + \mathcal{O}(\delta)}, \quad m_{\tilde{\chi}_5^0} \geq m_{\tilde{\chi}_6^0}
$$

Interesting regime: $m_{\tilde{\chi}_6^0} < m_{\tilde{\chi}_1^0} \Rightarrow \tilde{\chi}_6^0$ LSP of StMSSM!

- Then see decay cascades:

$$
\tilde{\chi}_1^0 \rightarrow l_i\tilde{l}_i\tilde{\chi}_1^0, \quad q_j\tilde{q}_j\tilde{\chi}_1^0, \quad Z\tilde{\chi}_1^0
$$

of sleptons

$$
\tilde{l}^- \rightarrow \tilde{l}^- + \tilde{\chi}_1^0 \rightarrow \tilde{l}^- + \left\{l_i^--l_i^+ + \{\tilde{\chi}_1^0\}
ight\}
$$

charginos

$$
\tilde{\chi}_1^- \rightarrow \tilde{l}^- + \tilde{\chi}_1^0 + \tilde{\nu} \rightarrow \tilde{l}^- + \left\{l_i^--l_i^+ + \{\tilde{\chi}_1^0 + \tilde{\nu}\}
ight\}
$$

and so on.
Summary

1. The Stueckelberg mechanism is a gauge invariant, renormalizable way to generate gauge boson masses for abelian vector fields.

2. It naturally appears in many models that descend from string theory and higher-dimensional SUGRA, with “topological” mass terms, related to GS anomaly cancellation.

3. It is very “economic” and distinct from Higgs models with extra $U(1)'$ gauge factors, already at the level of the degrees of freedom.

4. In the SM, it only affects the vector boson mass matrix with an extra Z', and induces small exotic couplings of the photon and Z.

5. In the MSSM, it introduces one extra scalar ρ, and two new neutralinos, besides Z'. In a wide range of parameter space, one of the new neutralinos can be the new LSP, and therefore affect SUSY signatures significantly.